Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Solar photolysis kinetics of disinfection byproducts.

Identifieur interne : 003117 ( Main/Exploration ); précédent : 003116; suivant : 003118

Solar photolysis kinetics of disinfection byproducts.

Auteurs : Baiyang Chen [États-Unis] ; Wontae Lee ; Paul K. Westerhoff ; Stuart W. Krasner ; Pierre Herckes

Source :

RBID : pubmed:20417540

Descripteurs français

English descriptors

Abstract

Disinfection byproducts (DBPs) discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Sunlight photolysis, as one process by which DBPs may dissipate in the receiving surface water, was investigated. Outdoor natural sunlight experiments were conducted in water for a series of carbonaceous DBPs (trihalomethanes, haloacetic acids, halopropanones, and haloacetaldehydes) and nitrogenous DBPs (nitrosamines, halonitromethanes, and haloacetonitriles). Their pseudo-first-order rate constants for photolytic degradation were then used to calibrate quantitative structure-activity relationship (QSAR) parameters, which, in return, predicted the photolysis potentials of other DBPs or related compounds. Nitrogenous DBPs were found to be more susceptible to solar irradiation than carbonaceous DBPs, with general rankings for the functional groups as follows: N-nitroso (N-NO)>nitro (NO(2))>nitrile (CN)>carbonyl (CO)>carboxyl (COOH). Compounds containing a high degree of halogenation (e.g., three halogens) were usually less stable than less halogenated species (e.g., those with two halogens). Bromine- or iodine-substituted species were more photosensitive than chlorinated analogs. While most bromine- and chlorine-containing trihalomethanes and haloacetic acids persisted over the 6-h test, nearly complete removal (>99%) of nitrosamines occurred within 1 h of sunlight exposure. Indoor laboratory experiments using simulated sunlight demonstrated that the degradation of nitrosamines was approximately 50% slower when organic matter was present, and approximately 11% slower in non-filtered water than in filtered water.

DOI: 10.1016/j.watres.2010.03.014
PubMed: 20417540


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Solar photolysis kinetics of disinfection byproducts.</title>
<author>
<name sortKey="Chen, Baiyang" sort="Chen, Baiyang" uniqKey="Chen B" first="Baiyang" last="Chen">Baiyang Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Chinese Environmental Scholars and Professionals Network, 11900 Stonehollow Drive, Apartment 338, Austin, TX 78758, USA. poplar_chen@hotmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chinese Environmental Scholars and Professionals Network, 11900 Stonehollow Drive, Apartment 338, Austin, TX 78758</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Wontae" sort="Lee, Wontae" uniqKey="Lee W" first="Wontae" last="Lee">Wontae Lee</name>
</author>
<author>
<name sortKey="Westerhoff, Paul K" sort="Westerhoff, Paul K" uniqKey="Westerhoff P" first="Paul K" last="Westerhoff">Paul K. Westerhoff</name>
</author>
<author>
<name sortKey="Krasner, Stuart W" sort="Krasner, Stuart W" uniqKey="Krasner S" first="Stuart W" last="Krasner">Stuart W. Krasner</name>
</author>
<author>
<name sortKey="Herckes, Pierre" sort="Herckes, Pierre" uniqKey="Herckes P" first="Pierre" last="Herckes">Pierre Herckes</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20417540</idno>
<idno type="pmid">20417540</idno>
<idno type="doi">10.1016/j.watres.2010.03.014</idno>
<idno type="wicri:Area/Main/Corpus">003205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003205</idno>
<idno type="wicri:Area/Main/Curation">003205</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003205</idno>
<idno type="wicri:Area/Main/Exploration">003205</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Solar photolysis kinetics of disinfection byproducts.</title>
<author>
<name sortKey="Chen, Baiyang" sort="Chen, Baiyang" uniqKey="Chen B" first="Baiyang" last="Chen">Baiyang Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Chinese Environmental Scholars and Professionals Network, 11900 Stonehollow Drive, Apartment 338, Austin, TX 78758, USA. poplar_chen@hotmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chinese Environmental Scholars and Professionals Network, 11900 Stonehollow Drive, Apartment 338, Austin, TX 78758</wicri:regionArea>
<placeName>
<region type="state">Texas</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lee, Wontae" sort="Lee, Wontae" uniqKey="Lee W" first="Wontae" last="Lee">Wontae Lee</name>
</author>
<author>
<name sortKey="Westerhoff, Paul K" sort="Westerhoff, Paul K" uniqKey="Westerhoff P" first="Paul K" last="Westerhoff">Paul K. Westerhoff</name>
</author>
<author>
<name sortKey="Krasner, Stuart W" sort="Krasner, Stuart W" uniqKey="Krasner S" first="Stuart W" last="Krasner">Stuart W. Krasner</name>
</author>
<author>
<name sortKey="Herckes, Pierre" sort="Herckes, Pierre" uniqKey="Herckes P" first="Pierre" last="Herckes">Pierre Herckes</name>
</author>
</analytic>
<series>
<title level="j">Water research</title>
<idno type="eISSN">1879-2448</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetaldehyde (chemistry)</term>
<term>Acetonitriles (chemistry)</term>
<term>Chloroform (chemistry)</term>
<term>Disinfectants (analysis)</term>
<term>Disinfectants (chemistry)</term>
<term>Kinetics (MeSH)</term>
<term>Models, Chemical (MeSH)</term>
<term>Nitrosamines (chemistry)</term>
<term>Photolysis (MeSH)</term>
<term>Quantitative Structure-Activity Relationship (MeSH)</term>
<term>Solar Activity (MeSH)</term>
<term>Trichloroacetic Acid (chemistry)</term>
<term>Waste Disposal, Fluid (MeSH)</term>
<term>Water (chemistry)</term>
<term>Water Pollutants, Chemical (analysis)</term>
<term>Water Pollutants, Chemical (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide trichloro-acétique (composition chimique)</term>
<term>Activité solaire (MeSH)</term>
<term>Acétaldéhyde (composition chimique)</term>
<term>Acétonitriles (composition chimique)</term>
<term>Chloroforme (composition chimique)</term>
<term>Cinétique (MeSH)</term>
<term>Désinfectants (analyse)</term>
<term>Désinfectants (composition chimique)</term>
<term>Eau (composition chimique)</term>
<term>Modèles chimiques (MeSH)</term>
<term>Nitrosamines (composition chimique)</term>
<term>Photolyse (MeSH)</term>
<term>Polluants chimiques de l'eau (analyse)</term>
<term>Polluants chimiques de l'eau (composition chimique)</term>
<term>Relation quantitative structure-activité (MeSH)</term>
<term>Élimination des déchets liquides (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Disinfectants</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acetaldehyde</term>
<term>Acetonitriles</term>
<term>Chloroform</term>
<term>Disinfectants</term>
<term>Nitrosamines</term>
<term>Trichloroacetic Acid</term>
<term>Water</term>
<term>Water Pollutants, Chemical</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Désinfectants</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acide trichloro-acétique</term>
<term>Acétaldéhyde</term>
<term>Acétonitriles</term>
<term>Chloroforme</term>
<term>Désinfectants</term>
<term>Eau</term>
<term>Nitrosamines</term>
<term>Polluants chimiques de l'eau</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Kinetics</term>
<term>Models, Chemical</term>
<term>Photolysis</term>
<term>Quantitative Structure-Activity Relationship</term>
<term>Solar Activity</term>
<term>Waste Disposal, Fluid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activité solaire</term>
<term>Cinétique</term>
<term>Modèles chimiques</term>
<term>Photolyse</term>
<term>Relation quantitative structure-activité</term>
<term>Élimination des déchets liquides</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Disinfection byproducts (DBPs) discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Sunlight photolysis, as one process by which DBPs may dissipate in the receiving surface water, was investigated. Outdoor natural sunlight experiments were conducted in water for a series of carbonaceous DBPs (trihalomethanes, haloacetic acids, halopropanones, and haloacetaldehydes) and nitrogenous DBPs (nitrosamines, halonitromethanes, and haloacetonitriles). Their pseudo-first-order rate constants for photolytic degradation were then used to calibrate quantitative structure-activity relationship (QSAR) parameters, which, in return, predicted the photolysis potentials of other DBPs or related compounds. Nitrogenous DBPs were found to be more susceptible to solar irradiation than carbonaceous DBPs, with general rankings for the functional groups as follows: N-nitroso (N-NO)>nitro (NO(2))>nitrile (CN)>carbonyl (CO)>carboxyl (COOH). Compounds containing a high degree of halogenation (e.g., three halogens) were usually less stable than less halogenated species (e.g., those with two halogens). Bromine- or iodine-substituted species were more photosensitive than chlorinated analogs. While most bromine- and chlorine-containing trihalomethanes and haloacetic acids persisted over the 6-h test, nearly complete removal (>99%) of nitrosamines occurred within 1 h of sunlight exposure. Indoor laboratory experiments using simulated sunlight demonstrated that the degradation of nitrosamines was approximately 50% slower when organic matter was present, and approximately 11% slower in non-filtered water than in filtered water.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20417540</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-2448</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>44</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Water research</Title>
<ISOAbbreviation>Water Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Solar photolysis kinetics of disinfection byproducts.</ArticleTitle>
<Pagination>
<MedlinePgn>3401-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.watres.2010.03.014</ELocationID>
<Abstract>
<AbstractText>Disinfection byproducts (DBPs) discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Sunlight photolysis, as one process by which DBPs may dissipate in the receiving surface water, was investigated. Outdoor natural sunlight experiments were conducted in water for a series of carbonaceous DBPs (trihalomethanes, haloacetic acids, halopropanones, and haloacetaldehydes) and nitrogenous DBPs (nitrosamines, halonitromethanes, and haloacetonitriles). Their pseudo-first-order rate constants for photolytic degradation were then used to calibrate quantitative structure-activity relationship (QSAR) parameters, which, in return, predicted the photolysis potentials of other DBPs or related compounds. Nitrogenous DBPs were found to be more susceptible to solar irradiation than carbonaceous DBPs, with general rankings for the functional groups as follows: N-nitroso (N-NO)>nitro (NO(2))>nitrile (CN)>carbonyl (CO)>carboxyl (COOH). Compounds containing a high degree of halogenation (e.g., three halogens) were usually less stable than less halogenated species (e.g., those with two halogens). Bromine- or iodine-substituted species were more photosensitive than chlorinated analogs. While most bromine- and chlorine-containing trihalomethanes and haloacetic acids persisted over the 6-h test, nearly complete removal (>99%) of nitrosamines occurred within 1 h of sunlight exposure. Indoor laboratory experiments using simulated sunlight demonstrated that the degradation of nitrosamines was approximately 50% slower when organic matter was present, and approximately 11% slower in non-filtered water than in filtered water.</AbstractText>
<CopyrightInformation>Copyright 2010 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Baiyang</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Chinese Environmental Scholars and Professionals Network, 11900 Stonehollow Drive, Apartment 338, Austin, TX 78758, USA. poplar_chen@hotmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Wontae</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Westerhoff</LastName>
<ForeName>Paul K</ForeName>
<Initials>PK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Krasner</LastName>
<ForeName>Stuart W</ForeName>
<Initials>SW</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herckes</LastName>
<ForeName>Pierre</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Water Res</MedlineTA>
<NlmUniqueID>0105072</NlmUniqueID>
<ISSNLinking>0043-1354</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000097">Acetonitriles</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004202">Disinfectants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009602">Nitrosamines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014874">Water Pollutants, Chemical</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>5V2JDO056X</RegistryNumber>
<NameOfSubstance UI="D014238">Trichloroacetic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7V31YC746X</RegistryNumber>
<NameOfSubstance UI="D002725">Chloroform</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GO1N1ZPR3B</RegistryNumber>
<NameOfSubstance UI="D000079">Acetaldehyde</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000079" MajorTopicYN="N">Acetaldehyde</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000097" MajorTopicYN="N">Acetonitriles</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002725" MajorTopicYN="N">Chloroform</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004202" MajorTopicYN="N">Disinfectants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008956" MajorTopicYN="N">Models, Chemical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009602" MajorTopicYN="N">Nitrosamines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010782" MajorTopicYN="Y">Photolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021281" MajorTopicYN="N">Quantitative Structure-Activity Relationship</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019445" MajorTopicYN="Y">Solar Activity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014238" MajorTopicYN="N">Trichloroacetic Acid</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014865" MajorTopicYN="N">Waste Disposal, Fluid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014874" MajorTopicYN="N">Water Pollutants, Chemical</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>12</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2010</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>4</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20417540</ArticleId>
<ArticleId IdType="pii">S0043-1354(10)00187-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.watres.2010.03.014</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Texas</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Herckes, Pierre" sort="Herckes, Pierre" uniqKey="Herckes P" first="Pierre" last="Herckes">Pierre Herckes</name>
<name sortKey="Krasner, Stuart W" sort="Krasner, Stuart W" uniqKey="Krasner S" first="Stuart W" last="Krasner">Stuart W. Krasner</name>
<name sortKey="Lee, Wontae" sort="Lee, Wontae" uniqKey="Lee W" first="Wontae" last="Lee">Wontae Lee</name>
<name sortKey="Westerhoff, Paul K" sort="Westerhoff, Paul K" uniqKey="Westerhoff P" first="Paul K" last="Westerhoff">Paul K. Westerhoff</name>
</noCountry>
<country name="États-Unis">
<region name="Texas">
<name sortKey="Chen, Baiyang" sort="Chen, Baiyang" uniqKey="Chen B" first="Baiyang" last="Chen">Baiyang Chen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003117 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003117 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20417540
   |texte=   Solar photolysis kinetics of disinfection byproducts.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20417540" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020